Math 10A

Worksheet, Discussion \#11; Monday, 7/2/2018
Instructor name: Roy Zhao

1 Taylor Series

1.1 Concepts

1. The Taylor series for a function $f(x)$ around a point $x=c$ is given by

$$
f(x) \approx f(c)+\frac{f^{\prime}(c)}{1!}(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\frac{f^{(4)}(c)}{4!}(x-c)^{4}+\cdots
$$

1.2 Problems

2. Use the second order Taylor series to approximate $\sqrt{17}$.

Solution: The formula for the second order Taylor series expanded at $x=c$ is

$$
f(x) \approx f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}
$$

The closest square is 16 , so we can expand around there since we know $\sqrt{16}=4$. We have that $f(x)=\sqrt{x}, f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, f^{\prime \prime}(x)=\frac{-1}{4 x \sqrt{x}}$. Plugging in $c=16$, we have that

$$
f(x) \approx 4+\frac{x-16}{8}-\frac{1}{512}(x-16)^{2}
$$

Plugging in $x=17$, we have that

$$
\sqrt{17} \approx 4+\frac{1}{8}-\frac{1}{512} \approx 4.123
$$

3. Find the Taylor series for $x^{5}+3 x^{3}+2 x+10$.

Solution: Taylor series give you a polynomial approximation for your function. But if your function is already a polynomial, then it gives the same thing. Try it out and verify it by yourself! So the Taylor series is just $x^{5}+3 x^{3}+2 x+10$.
4. Use the second order approximation to $\sqrt[3]{28}$.

Solution: A close cube that we know is $3^{3}=27$. So we calculate the second order Taylor series expanded at $x=27$ to get

$$
\sqrt[3]{x} \approx 3+\frac{x-27}{27}-\frac{(x-27)^{2}}{2187}
$$

So plugging in 28 gives

$$
\sqrt[3]{28} \approx 3+\frac{1}{27}-\frac{1}{2187} \approx 3.036
$$

5. Use the second order approximation to find $\ln 1.1$.

Solution: We know that $\ln 1=1$. So we can expand out at $x=1$ to get

$$
\ln x \approx 0+(x-1)-\frac{(x-1)^{2}}{2}
$$

Thus, we have that $\ln 1.1 \approx(0.1)-\frac{0.1^{2}}{2}=0.095$.
6. Use the second order approximation to find $\sqrt{5}$.

Solution: We have that $\sqrt{4}=2$ and 4 is close to 5 so we expand there. We have that

$$
\sqrt{x} \approx 2+\frac{x-4}{4}-\frac{1}{64}(x-4)^{2} .
$$

Now we plug in 5 to get

$$
\sqrt{5} \approx 2+\frac{1}{4}-\frac{1}{64} \approx 2.234
$$

7. Use the second order approximation to find $e^{0.1}$.

Solution: We know that $e^{0}=1$ so we can expand around $x=0$. Doing so gives

$$
e^{x} \approx 1+x+\frac{x^{2}}{2}
$$

Thus, we have that $e^{0.1} \approx 1+0.1+0.1^{2} / 2=1.105$.
8. Use the second order approximation to find $\sec (0.1)$.

Solution: We know that $\sec (0)=1 / \cos (0)=1$. We can expand there using the fact that the first derivative is $\sec (x) \tan (x)$ and the second derivative is $\sec (x)\left(\tan ^{2}(x)+\right.$ $\left.\sec ^{2}(x)\right)$. Thus, we get that the Taylor series is

$$
\sec (x) \approx 1+\frac{x^{2}}{2}
$$

Thus, we have that $\sec (0.1) \approx 1+0.1^{2} / 2=1.005$.
9. Use the third order approximation to find $\sin (0.1)$.

Solution: We expand around 0 since $\sin 0=0$. We find that

$$
\sin x \approx x-\frac{x^{3}}{6}
$$

and so $\sin (0.1) \approx 0.1-0.1^{3} / 6=0.0998$.
10. Use the second order approximation to find $\cos (0.1)$.

Solution: Expanding at $x=0$ gives

$$
\cos (x) \approx 1-\frac{x^{2}}{2}
$$

Thus, $\cos (0.1) \approx 1-0.1^{2} / 2=0.995$.

